# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x ^{ 2 } -2x-5 \right) \left( x ^{ 2 } -2x-6 \right) -6$
$x ^ { 4 } - 4 x ^ { 3 } - 7 x ^ { 2 } + 22 x + 24$
Organize polynomials
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) - 6$
 Organize the expression with the distributive law 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 22 } \color{#FF6800}{ x } + \color{#FF6800}{ 30 } - 6$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 30 } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 30 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
$x ^ { 4 } - 4 x ^ { 3 } - 7 x ^ { 2 } + 22 x + \left ( \color{#FF6800}{ 30 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
 Arrange the constant term 
$x ^ { 4 } - 4 x ^ { 3 } - 7 x ^ { 2 } + 22 x + \color{#FF6800}{ 24 }$
$\left ( x - 4 \right ) \left ( x - 3 \right ) \left ( x + 1 \right ) \left ( x + 2 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 24 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 22 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 24 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 24 } \right )$
$\left ( x + 1 \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 24 } \right )$
 Do factorization 
$\left ( x + 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right )$
$\left ( x + 1 \right ) \left ( x + 2 \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \right )$
 Use the factoring formula, $x^{2} + \left(a+b\right)x + ab = \left(x+a\right)\left(x+b\right)$
$\left ( x + 1 \right ) \left ( x + 2 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
$\left ( x + 1 \right ) \left ( x + 2 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
 Sort the factors 
$\left ( x + 1 \right ) \left ( x + 2 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
$\left ( x + 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Sort the factors 
$\left ( x + 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
Solution search results