Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$\left( x ^{ 2 } +4 \right) \left( x ^{ 2 } -4 \right)$
$x ^ { 4 } - 16$
Organize polynomials
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 16 }$
$\left ( x - 2 \right ) \left ( x + 2 \right ) \left ( x ^ { 2 } + 4 \right )$
Arrange the expression in the form of factorization..
$\left ( x ^ { 2 } + 4 \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
$ $ Factorize to use the polynomial formula of sum and difference $ $
$\left ( x ^ { 2 } + 4 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$\left ( x ^ { 2 } + 4 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Sort the factors $ $
$\left ( x ^ { 2 } + 4 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Sort the factors $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-

$if\times \leq -1$ 
$if\times \leq -1$ $f\left(x\right)= \begin{cases} -\left(x+3\right)^{2}+4 \\ -3 \\ \left(x-2\right)^{2}-4 \end{cases} $ $if-1<\times \leq 1$ 
$f\left(x\right)= \begin{cases} -\left(x-3\right)^{2}+4 \\ -3 \\ \left(x+2\right)^{2}-4 \end{cases} $ $if-1<\times \leq 1$ 
$ifx,1$ $f\times >1$ 
$OA$ $O$ B 
$if\times \leq -1$ 
$f\left(x\right)= \begin{cases} -\left(x+3\right)^{2}+4 \\ -3 \\ \left(x-2\right)^{2}-4 \end{cases} $ $1fx<-1$ $1f-1<x<1$ $1t\times 21$ $f\left(x\right)= \begin{cases} \left(x+3\right)^{2}-4 \\ -3 \\ -\left(x-2\right)^{2}+4 \end{cases} $ $if-1<x\leq 1$ 
$\left(f\times >1$ 
$Oc$ $O$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo