Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( x ^{ 2 } +3x \right) ^{ 2 } -2x ^{ 2 } -6x-8$
$x ^ { 4 } + 6 x ^ { 3 } + 7 x ^ { 2 } - 6 x - 8$
Organize polynomials
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } - 2 x ^ { 2 } - 6 x - 8$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } + \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } - 2 x ^ { 2 } - 6 x - 8$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Organize the similar terms 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$x ^ { 4 } + 6 x ^ { 3 } + \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } - 6 x - 8$
 Arrange the constant term 
$x ^ { 4 } + 6 x ^ { 3 } + \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } - 6 x - 8$
$\left ( x - 1 \right ) \left ( x + 1 \right ) \left ( x + 2 \right ) \left ( x + 4 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Do factorization 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 14 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right )$
$\left ( x - 1 \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 14 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right )$
 Do factorization 
$\left ( x - 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right )$
$\left ( x - 1 \right ) \left ( x + 1 \right ) \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right )$
 Use the factoring formula, $x^{2} + \left(a+b\right)x + ab = \left(x+a\right)\left(x+b\right)$
$\left ( x - 1 \right ) \left ( x + 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$\left ( x - 1 \right ) \left ( x + 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Sort the factors 
$\left ( x - 1 \right ) \left ( x + 1 \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture