# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a-b \right) c-a+b$
$a c - a - b c + b$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \color{#FF6800}{ c } - a + b$
 Use the law of distribution 
$\color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } - a + b$
$\color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b }$
$\left ( a - b \right ) \left ( c - 1 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b }$
 Expand the expression 
$\color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b }$
$\color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b }$
 Do factorization 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Solution search results