Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a-3 \right) \left( x+y \right) + \left( a+2 \right) \left( x+y \right)$
$\left ( 2 a - 1 \right ) x + \left ( 2 a - 1 \right ) y$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) + \left ( a + 2 \right ) \left ( x + y \right )$
 Use the law of distribution 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } + \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ y } + \left ( a + 2 \right ) \left ( x + y \right )$
$\left ( a - 3 \right ) x + \left ( a - 3 \right ) y + \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
 Use the law of distribution 
$\left ( a - 3 \right ) x + \left ( a - 3 \right ) y + \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } + \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ y }$
 Organize the similar terms 
$\left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \right ) \color{#FF6800}{ y }$
$\left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \right ) \color{#FF6800}{ x } + \left ( \left ( a - 3 \right ) + \left ( a + 2 \right ) \right ) y$
 Arrange the constant term 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( \left ( a - 3 \right ) + \left ( a + 2 \right ) \right ) y$
$\left ( 2 a - 1 \right ) x + \left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \right ) \color{#FF6800}{ y }$
 Arrange the constant term 
$\left ( 2 a - 1 \right ) x + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y }$
$\left ( 2 a - 1 \right ) \left ( x + y \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y }$
 Bind the expressions with the common factor $2 a - 1$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture