Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\left( a-2b+3 \right) \left( a-6 \right) - \left( 2a+1 \right) \left( 2-b \right)$
$a ^ { 2 } - 7 a + 13 b - 20$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) - \left ( 2 a + 1 \right ) \left ( 2 - b \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } + \color{#FF6800}{ 12 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 18 } - \left ( 2 a + 1 \right ) \left ( 2 - b \right )$
$a ^ { 2 } - 2 a b - 3 a + 12 b - 18 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 2 - b \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$a ^ { 2 } - 2 a b - 3 a + 12 b - 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 2 - b \right )$
$a ^ { 2 } - 2 a b - 3 a + 12 b - 18 + \left ( - 2 a - 1 \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ b } \right )$
$ $ Sort the polynomial expressions in descending order $ $
$a ^ { 2 } - 2 a b - 3 a + 12 b - 18 + \left ( - 2 a - 1 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$a ^ { 2 } - 2 a b - 3 a + 12 b - 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$ $ Organize the expression with the distributive law $ $
$a ^ { 2 } - 2 a b - 3 a + 12 b - 18 + \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } + \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Organize the similar terms $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$a ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } + \left ( - 3 - 4 \right ) a + \left ( 12 + 1 \right ) b + \left ( - 18 - 2 \right )$
$ $ Organize the mononomial expression $ $
$a ^ { 2 } + \color{#FF6800}{ 0 } + \left ( - 3 - 4 \right ) a + \left ( 12 + 1 \right ) b + \left ( - 18 - 2 \right )$
$a ^ { 2 } + 0 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ a } + \left ( 12 + 1 \right ) b + \left ( - 18 - 2 \right )$
$ $ Arrange the constant term $ $
$a ^ { 2 } + 0 \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ a } + \left ( 12 + 1 \right ) b + \left ( - 18 - 2 \right )$
$a ^ { 2 } + 0 - 7 a + \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } + \left ( - 18 - 2 \right )$
$ $ Arrange the constant term $ $
$a ^ { 2 } + 0 - 7 a + \color{#FF6800}{ 13 } \color{#FF6800}{ b } + \left ( - 18 - 2 \right )$
$a ^ { 2 } + 0 - 7 a + 13 b + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Arrange the constant term $ $
$a ^ { 2 } + 0 - 7 a + 13 b \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
$a ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ 0 } - 7 a + 13 b - 20$
$ $ 0 does not change when you add or subtract $ $
$a ^ { 2 } - 7 a + 13 b - 20$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo