Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a-2 \right) ^{ 2 } -9$
$a ^ { 2 } - 4 a - 5$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } - 9$
 Expand the binomial expression 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } + \color{#FF6800}{ 4 } - 9$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
 Organize the similar terms 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right )$
$a ^ { 2 } - 4 a + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right )$
 Arrange the constant term 
$a ^ { 2 } - 4 a \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
$\left ( a - 5 \right ) \left ( a + 1 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 }$
 Factorize to use the polynomial formula of sum and difference 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture