Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$\left( a+b+c \right) ^{ 2 } \left( a+b+c \right)$
$a ^ { 3 } + 3 a ^ { 2 } b + 3 a ^ { 2 } c + 3 a b ^ { 2 } + 6 a b c + 3 a c ^ { 2 } + b ^ { 3 } + 3 b ^ { 2 } c + 3 b c ^ { 2 } + c ^ { 3 }$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } } \left ( a + b + c \right )$
$ $ Expand an equation $ $
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( a + b + c \right )$
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 3 } }$
$\left ( a + b + c \right ) ^ { 3 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } } \left ( a + b + c \right )$
$ $ Expand the expression $ $
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( a + b + c \right )$
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
$ $ Sort the factors $ $
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 3 } }$
Solution search results
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-$8 \times $ 
$ = $ In $ \dfrac { E } { 8 } $ $ \left. \begin{array} { l } { \dfrac { 1 } { 3 } } \\ { \dfrac { 11 } { 3 } } \end{array} \right. $ $ \left. \begin{array} { l } { \dfrac { 1 } { 1 } } \\ { \dfrac { 1 } { 1 } } \end{array} \right. $ and $ \left. \begin{array} { l } { δ } \\ { 8 } \end{array} \right. $ 
Find the length of PR. $ \bar { I } $ 
$0$ 
$ \bar { u } $ 
$2$ $ = $ $ \| = $
7th-9th grade
Other
search-thumbnail-$a$ 
$c$ $=\left(a+b+c\right)\left(a-c\right)^{2}$ 
$ \begin{cases} b+c \\ c+a \\ a+b \end{cases} $ $b$ $c|$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo