# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a+b+c \right) ^{ 2 } \left( a+b+c \right)$
$a ^ { 3 } + 3 a ^ { 2 } b + 3 a ^ { 2 } c + 3 a b ^ { 2 } + 6 a b c + 3 a c ^ { 2 } + b ^ { 3 } + 3 b ^ { 2 } c + 3 b c ^ { 2 } + c ^ { 3 }$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } } \left ( a + b + c \right )$
 Expand an equation 
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( a + b + c \right )$
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 3 } }$
$\left ( a + b + c \right ) ^ { 3 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } } \left ( a + b + c \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( a + b + c \right )$
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 3 } }$
Solution search results