qanda-logo
search-icon
Symbol

Calculator search results

Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$12 a ^ { 5 } b + 40 a ^ { 3 } b ^ { 3 } + 12 a b ^ { 5 }$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 6 } } - \left ( a - b \right ) ^ { 6 }$
$ $ Expand an equation $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } + \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } + \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 20 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } + \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } + \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } + \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } } - \left ( a - b \right ) ^ { 6 }$
$a ^ { 6 } + 6 a ^ { 5 } b + 15 a ^ { 4 } b ^ { 2 } + 20 a ^ { 3 } b ^ { 3 } + 15 a ^ { 2 } b ^ { 4 } + 6 a b ^ { 5 } + b ^ { 6 } - \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 6 } }$
$ $ Expand an equation $ $
$a ^ { 6 } + 6 a ^ { 5 } b + 15 a ^ { 4 } b ^ { 2 } + 20 a ^ { 3 } b ^ { 3 } + 15 a ^ { 2 } b ^ { 4 } + 6 a b ^ { 5 } + b ^ { 6 } - \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 20 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } } \right )$
$a ^ { 6 } + 6 a ^ { 5 } b + 15 a ^ { 4 } b ^ { 2 } + 20 a ^ { 3 } b ^ { 3 } + 15 a ^ { 2 } b ^ { 4 } + 6 a b ^ { 5 } + b ^ { 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 20 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } } \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$a ^ { 6 } + 6 a ^ { 5 } b + 15 a ^ { 4 } b ^ { 2 } + 20 a ^ { 3 } b ^ { 3 } + 15 a ^ { 2 } b ^ { 4 } + 6 a b ^ { 5 } + b ^ { 6 } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } + \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 20 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } + \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 20 } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } }$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } + \left ( 6 + 6 \right ) a ^ { 5 } b + \left ( 15 - 15 \right ) a ^ { 4 } b ^ { 2 } + \left ( 20 + 20 \right ) a ^ { 3 } b ^ { 3 } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$ $ Organize the mononomial expression $ $
$\color{#FF6800}{ 0 } + \left ( 6 + 6 \right ) a ^ { 5 } b + \left ( 15 - 15 \right ) a ^ { 4 } b ^ { 2 } + \left ( 20 + 20 \right ) a ^ { 3 } b ^ { 3 } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$0 + \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } + \left ( 15 - 15 \right ) a ^ { 4 } b ^ { 2 } + \left ( 20 + 20 \right ) a ^ { 3 } b ^ { 3 } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$ $ Arrange the constant term $ $
$0 + \color{#FF6800}{ 12 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ b } + \left ( 15 - 15 \right ) a ^ { 4 } b ^ { 2 } + \left ( 20 + 20 \right ) a ^ { 3 } b ^ { 3 } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$0 + 12 a ^ { 5 } b + \left ( \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + \left ( 20 + 20 \right ) a ^ { 3 } b ^ { 3 } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$ $ Organize the mononomial expression $ $
$0 + 12 a ^ { 5 } b + \color{#FF6800}{ 0 } + \left ( 20 + 20 \right ) a ^ { 3 } b ^ { 3 } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$0 + 12 a ^ { 5 } b + 0 + \left ( \color{#FF6800}{ 20 } \color{#FF6800}{ + } \color{#FF6800}{ 20 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$ $ Arrange the constant term $ $
$0 + 12 a ^ { 5 } b + 0 + \color{#FF6800}{ 40 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } + \left ( 15 - 15 \right ) a ^ { 2 } b ^ { 4 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$0 + 12 a ^ { 5 } b + 0 + 40 a ^ { 3 } b ^ { 3 } + \left ( \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$ $ Organize the mononomial expression $ $
$0 + 12 a ^ { 5 } b + 0 + 40 a ^ { 3 } b ^ { 3 } + \color{#FF6800}{ 0 } + \left ( 6 + 6 \right ) a b ^ { 5 } + \left ( 1 - 1 \right ) b ^ { 6 }$
$0 + 12 a ^ { 5 } b + 0 + 40 a ^ { 3 } b ^ { 3 } + 0 + \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } + \left ( 1 - 1 \right ) b ^ { 6 }$
$ $ Arrange the constant term $ $
$0 + 12 a ^ { 5 } b + 0 + 40 a ^ { 3 } b ^ { 3 } + 0 + \color{#FF6800}{ 12 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 5 } } + \left ( 1 - 1 \right ) b ^ { 6 }$
$0 + 12 a ^ { 5 } b + 0 + 40 a ^ { 3 } b ^ { 3 } + 0 + 12 a b ^ { 5 } + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 6 } }$
$ $ Organize the mononomial expression $ $
$0 + 12 a ^ { 5 } b + 0 + 40 a ^ { 3 } b ^ { 3 } + 0 + 12 a b ^ { 5 } + \color{#FF6800}{ 0 }$
$\color{#FF6800}{ 0 } + 12 a ^ { 5 } b \color{#FF6800}{ + } \color{#FF6800}{ 0 } + 40 a ^ { 3 } b ^ { 3 } \color{#FF6800}{ + } \color{#FF6800}{ 0 } + 12 a b ^ { 5 } \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
$ $ 0 does not change when you add or subtract $ $
$12 a ^ { 5 } b + 40 a ^ { 3 } b ^ { 3 } + 12 a b ^ { 5 }$
$4 a b \left ( a ^ { 2 } + 3 b ^ { 2 } \right ) \left ( 3 a ^ { 2 } + b ^ { 2 } \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 6 } }$
$ $ Factorize to use the polynomial formula of sum and difference $ $
$\left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \right ) \left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \right )$
$\left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \right ) \left ( \left ( a + b \right ) ^ { 3 } - \left ( a - b \right ) ^ { 3 } \right )$
$ $ Expand the expression $ $
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \left ( a + b \right ) ^ { 3 } - \left ( a - b \right ) ^ { 3 } \right )$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ a } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \left ( a + b \right ) ^ { 3 } - \left ( a - b \right ) ^ { 3 } \right )$
$ $ Tie a common factor $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \left ( a + b \right ) ^ { 3 } - \left ( a - b \right ) ^ { 3 } \right )$
$2 a \left ( a ^ { 2 } + 3 b ^ { 2 } \right ) \left ( \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 3 } } \right )$
$ $ Expand the expression $ $
$2 a \left ( a ^ { 2 } + 3 b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \right )$
$2 a \left ( a ^ { 2 } + 3 b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 3 } } \right )$
$ $ Tie a common factor $ $
$2 a \left ( a ^ { 2 } + 3 b ^ { 2 } \right ) \times \color{#FF6800}{ 2 } \color{#FF6800}{ b } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Arrange the coefficients $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ b } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ b } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Sort the factors $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ b } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture