Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a+b \right) ^{ 2 } - \left( b-c \right) ^{ 2 }$
$a ^ { 2 } + 2 a b + 2 b c - c ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( b - c \right ) ^ { 2 }$
 Expand the binomial expression 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } + \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } - \left ( b - c \right ) ^ { 2 }$
$a ^ { 2 } + 2 a b + b ^ { 2 } - \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the binomial expression 
$a ^ { 2 } + 2 a b + b ^ { 2 } - \left ( \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right )$
$a ^ { 2 } + 2 a b + b ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$a ^ { 2 } + 2 a b + b ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
 Organize the similar terms 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
$a ^ { 2 } + 2 a b + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } + 2 b c - c ^ { 2 }$
 Organize the mononomial expression 
$a ^ { 2 } + 2 a b + \color{#FF6800}{ 0 } + 2 b c - c ^ { 2 }$
$a ^ { 2 } + 2 a b \color{#FF6800}{ + } \color{#FF6800}{ 0 } + 2 b c - c ^ { 2 }$
 0 does not change when you add or subtract 
$a ^ { 2 } + 2 a b + 2 b c - c ^ { 2 }$
$\left ( a + c \right ) \left ( a + 2 b - c \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) ^ { \color{#FF6800}{ 2 } }$
 Factorize to use the polynomial formula of sum and difference 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ c } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ c } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture