qanda-logo
search-icon
Symbol

Calculator search results

Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$2 a ^ { 2 } - 4 a b - 2 b ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) - \left ( a - b \right ) \left ( - a + b \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } - \left ( a - b \right ) \left ( - a + b \right )$
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( - a + b \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( - a + b \right )$
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right )$
$ $ Organize the expression with the distributive law $ $
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } + \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } + \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \left ( - 2 - 2 \right ) a b + \left ( - 3 + 1 \right ) b ^ { 2 }$
$ $ Arrange the constant term $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \left ( - 2 - 2 \right ) a b + \left ( - 3 + 1 \right ) b ^ { 2 }$
$2 a ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } + \left ( - 3 + 1 \right ) b ^ { 2 }$
$ $ Arrange the constant term $ $
$2 a ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ b } + \left ( - 3 + 1 \right ) b ^ { 2 }$
$2 a ^ { 2 } - 4 a b + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$ $ Arrange the constant term $ $
$2 a ^ { 2 } - 4 a b \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$2 \left ( a ^ { 2 } - 2 a b - b ^ { 2 } \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right )$
$ $ Expand the expression $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$ $ Tie a common factor $ $
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture