Symbol

Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( a+b \right) \left( a-3b \right) - \left( a-b \right) \left( -a+b \right)$
$2 a ^ { 2 } - 4 a b - 2 b ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) - \left ( a - b \right ) \left ( - a + b \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } - \left ( a - b \right ) \left ( - a + b \right )$
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( - a + b \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( - a + b \right )$
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right )$
 Organize the expression with the distributive law 
$a ^ { 2 } - 2 a b - 3 b ^ { 2 } + \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } + \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \left ( - 2 - 2 \right ) a b + \left ( - 3 + 1 \right ) b ^ { 2 }$
 Arrange the constant term 
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \left ( - 2 - 2 \right ) a b + \left ( - 3 + 1 \right ) b ^ { 2 }$
$2 a ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ b } + \left ( - 3 + 1 \right ) b ^ { 2 }$
 Arrange the constant term 
$2 a ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ b } + \left ( - 3 + 1 \right ) b ^ { 2 }$
$2 a ^ { 2 } - 4 a b + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
 Arrange the constant term 
$2 a ^ { 2 } - 4 a b \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$2 \left ( a ^ { 2 } - 2 a b - b ^ { 2 } \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right )$
 Expand the expression 
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
 Tie a common factor 
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture