qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\left( 8y ^{ 2a-3 } -4x ^{ 4a } \right) \left( 4x ^{ 4a } +8y ^{ 2a-3 } \right)$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 16 x ^ { 8 a } - 4 x ^ { 4 a } \times 8 y ^ { 2 a - 3 }$
Simplify the expression
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right )$
$ $ Expand using $ \left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right )$
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) + \left ( 8 y ^ { 2 a - 3 } \right ) \left ( 8 y ^ { 2 a - 3 } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( 8 y ^ { 2 a - 3 } \right ) \left ( 8 y ^ { 2 a - 3 } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } \times 8 y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } \times 8 y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 1 } \times \color{#FF6800}{ 8 } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 1 } \times \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Add the exponent as the base is the same $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Add $ 1 $ and $ 1$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { \color{#FF6800}{ 2 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Add the exponent as the base is the same $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } \color{#FF6800}{ y } ^ { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } - 3 \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Calculate between similar terms $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } - 3 - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { 4 a \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Find the sum of the negative numbers $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { 4 a \color{#FF6800}{ - } \color{#FF6800}{ 6 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } y ^ { 4 a - 6 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Calculate power $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 64 } y ^ { 4 a - 6 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \times 4 x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } \times 4 x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 1 } \times \color{#FF6800}{ 4 } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 1 } \times \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Add the exponent as the base is the same $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Add $ 1 $ and $ 1$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { \color{#FF6800}{ 2 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Add the exponent as the base is the same $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } x ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Calculate between similar terms $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } x ^ { \color{#FF6800}{ 8 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 2 } } x ^ { 8 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$ $ Calculate power $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - \color{#FF6800}{ 16 } x ^ { 8 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 16 x ^ { 8 a } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right )$
$ $ Get rid of unnecessary parentheses $ $
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 16 x ^ { 8 a } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ \times } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo