# Calculator search results

Formula
Calculate the value
$\left( 8y ^{ 2a-3 } -4x ^{ 4a } \right) \left( 4x ^{ 4a } +8y ^{ 2a-3 } \right)$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 16 x ^ { 8 a } - 4 x ^ { 4 a } \times 8 y ^ { 2 a - 3 }$
Simplify the expression
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right )$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right )$
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) + \left ( 8 y ^ { 2 a - 3 } \right ) \left ( 8 y ^ { 2 a - 3 } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( 8 y ^ { 2 a - 3 } \right ) \left ( 8 y ^ { 2 a - 3 } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Get rid of unnecessary parentheses 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } \times 8 y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 If the exponent is omitted, the exponent of that term is equal to 1 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } \times 8 y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 1 } \times \color{#FF6800}{ 8 } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 If the exponent is omitted, the exponent of that term is equal to 1 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 1 } \times \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Add the exponent as the base is the same 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Add $1$ and $1$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { \color{#FF6800}{ 2 } } y ^ { 2 a - 3 } y ^ { 2 a - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Add the exponent as the base is the same 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } \color{#FF6800}{ y } ^ { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Get rid of unnecessary parentheses 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } - 3 \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Calculate between similar terms 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } - 3 - 3 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { 4 a \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Find the sum of the negative numbers 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 8 ^ { 2 } y ^ { 4 a \color{#FF6800}{ - } \color{#FF6800}{ 6 } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 8 } ^ { \color{#FF6800}{ 2 } } y ^ { 4 a - 6 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Calculate power 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + \color{#FF6800}{ 64 } y ^ { 4 a - 6 } + \left ( - 4 x ^ { 4 a } \right ) \left ( 4 x ^ { 4 a } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Get rid of unnecessary parentheses 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \times 4 x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 If the exponent is omitted, the exponent of that term is equal to 1 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } \times 4 x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 1 } \times \color{#FF6800}{ 4 } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 If the exponent is omitted, the exponent of that term is equal to 1 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 1 } \times \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Add the exponent as the base is the same 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Add $1$ and $1$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { \color{#FF6800}{ 2 } } x ^ { 4 a } x ^ { 4 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Add the exponent as the base is the same 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } x ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Calculate between similar terms 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 4 ^ { 2 } x ^ { \color{#FF6800}{ 8 } \color{#FF6800}{ a } } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - \color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 2 } } x ^ { 8 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
 Calculate power 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - \color{#FF6800}{ 16 } x ^ { 8 a } + \left ( - 4 x ^ { 4 a } \right ) \left ( 8 y ^ { 2 a - 3 } \right )$
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 16 x ^ { 8 a } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \right ) \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } \right )$
 Get rid of unnecessary parentheses 
$8 y ^ { 2 a - 3 } \times 4 x ^ { 4 a } + 64 y ^ { 4 a - 6 } - 16 x ^ { 8 a } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } \color{#FF6800}{ a } } \color{#FF6800}{ \times } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } }$
Solution search results