# Calculator search results

Formula
Calculate the value
$\left( 5+ \sqrt{ 5 } \right) \left( 5- \sqrt{ 5 } \right)$
$20$
Calculate the value
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 5 } } \right ) \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right )$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } - \left ( \sqrt{ 5 } \right ) ^ { 2 }$
 Calculate power 
$\color{#FF6800}{ 25 } - \left ( \sqrt{ 5 } \right ) ^ { 2 }$
$25 - \left ( \sqrt{ \color{#FF6800}{ 5 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 If you square the radical sign, it will disappear 
$25 - \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 25 } \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 Subtract $5$ from $25$
$\color{#FF6800}{ 20 }$
Solution search results