# Calculator search results

Formula
Calculate the value
Factorize by the sum and difference formula
$\left( 5 ^{ 2 } +1 \right) \left( 5 ^{ 4 } +1 \right)$
$16276$
Calculate the value
$\left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } + 1 \right ) \left ( 5 ^ { 4 } + 1 \right )$
 Calculate power 
$\left ( \color{#FF6800}{ 25 } + 1 \right ) \left ( 5 ^ { 4 } + 1 \right )$
$\left ( \color{#FF6800}{ 25 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 5 ^ { 4 } + 1 \right )$
 Add $25$ and $1$
$\color{#FF6800}{ 26 } \left ( 5 ^ { 4 } + 1 \right )$
$26 \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } + 1 \right )$
 Calculate power 
$26 \left ( \color{#FF6800}{ 625 } + 1 \right )$
$26 \left ( \color{#FF6800}{ 625 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Add $625$ and $1$
$26 \times \color{#FF6800}{ 626 }$
$\color{#FF6800}{ 26 } \color{#FF6800}{ \times } \color{#FF6800}{ 626 }$
 Multiply $26$ and $626$
$\color{#FF6800}{ 16276 }$
$\dfrac { 1 } { 24 } \left ( 5 ^ { 8 } - 1 \right )$
Calculation using the sum and difference formula
$\left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 5 ^ { 4 } + 1 \right )$
 Multiply $(5 ^ { 2 }-1)$ to the front and $\dfrac{1}{5 ^ { 2 }-1}$ to keep the original expression 
$\color{#FF6800}{ \dfrac { 1 } { 5 ^ { 2 } - 1 } } \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 5 ^ { 4 } + 1 \right )$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 5 ^ { 4 } + 1 \right )$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \right ) \left ( 5 ^ { 4 } + 1 \right )$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } } - 1 ^ { 2 } \right ) \left ( 5 ^ { 4 } + 1 \right )$
 Calculate the power of the power 
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } - 1 ^ { 2 } \right ) \left ( 5 ^ { 4 } + 1 \right )$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( 5 ^ { 4 } - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \right ) \left ( 5 ^ { 4 } + 1 \right )$
 Calculate power 
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( 5 ^ { 4 } - \color{#FF6800}{ 1 } \right ) \left ( 5 ^ { 4 } + 1 \right )$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Expand the expression using $\left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \right )$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } \right ) ^ { \color{#FF6800}{ 2 } } - 1 ^ { 2 } \right )$
 Calculate the power of the power 
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 8 } } - 1 ^ { 2 } \right )$
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( 5 ^ { 8 } - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 2 } } \right )$
 Calculate power 
$\dfrac { 1 } { 5 ^ { 2 } - 1 } \left ( 5 ^ { 8 } - \color{#FF6800}{ 1 } \right )$
$\dfrac { 1 } { \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } - 1 } \left ( 5 ^ { 8 } - 1 \right )$
 Calculate power 
$\dfrac { 1 } { \color{#FF6800}{ 25 } - 1 } \left ( 5 ^ { 8 } - 1 \right )$
$\dfrac { 1 } { \color{#FF6800}{ 25 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } \left ( 5 ^ { 8 } - 1 \right )$
 Subtract $1$ from $25$
$\dfrac { 1 } { \color{#FF6800}{ 24 } } \left ( 5 ^ { 8 } - 1 \right )$
Solution search results