# Calculator search results

Formula
Calculate the value
$\left( 5 \sqrt{ 3 } + \sqrt{ 2 } \right) \left( 4 \sqrt{ 3 } - \sqrt{ 2 } \right)$
$58 - \sqrt{ 6 }$
Calculate the value
$\left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right )$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right )$
$\left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \right ) + \left ( 5 \sqrt{ 3 } \right ) \times \left ( - \sqrt{ 2 } \right ) + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 5 \sqrt{ 3 } \right ) \times \left ( - \sqrt{ 2 } \right ) + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
$\color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } + \left ( 5 \sqrt{ 3 } \right ) \times \left ( - \sqrt{ 2 } \right ) + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
 Simplify the expression 
$\color{#FF6800}{ 60 } + \left ( 5 \sqrt{ 3 } \right ) \times \left ( - \sqrt{ 2 } \right ) + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
$60 + \left ( \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
 Get rid of unnecessary parentheses 
$60 + \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
$60 + \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \right ) + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
 Simplify the expression 
$60 \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 6 } } + \sqrt{ 2 } \left ( 4 \sqrt{ 3 } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
$60 - 5 \sqrt{ 6 } + \sqrt{ \color{#FF6800}{ 2 } } \left ( \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } \right ) + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
 Get rid of unnecessary parentheses 
$60 - 5 \sqrt{ 6 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
$60 - 5 \sqrt{ 6 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 3 } } + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
 Simplify the expression 
$60 - 5 \sqrt{ 6 } + \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 6 } } + \sqrt{ 2 } \times \left ( - \sqrt{ 2 } \right )$
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } + \sqrt{ 2 } \times \left ( \color{#FF6800}{ - } \sqrt{ 2 } \right )$
 Move the (-) sign forward 
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } \color{#FF6800}{ - } \sqrt{ 2 } \sqrt{ 2 }$
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 2 }$
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } - \left ( \sqrt{ 2 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 2 } }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } - \left ( \sqrt{ 2 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } }$
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } \color{#FF6800}{ - } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } - \left ( \sqrt{ 2 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } - \left ( \sqrt{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } - \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 If you square the radical sign, it will disappear 
$60 - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } - \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 60 } - 5 \sqrt{ 6 } + 4 \sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 Subtract $2$ from $60$
$\color{#FF6800}{ 58 } - 5 \sqrt{ 6 } + 4 \sqrt{ 6 }$
$58 \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \sqrt{ \color{#FF6800}{ 6 } }$
 Calculate between similar terms 
$58 \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 6 } }$
$58 \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ 6 }$
 Multiplying any number by 1 does not change the value 
$58 - \sqrt{ 6 }$
Solution search results