# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( 4x-2 \right) \left( 4x+6 \right)$
$16 x ^ { 2 } + 16 x - 12$
Organize polynomials
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 16 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$4 \left ( 2 x - 1 \right ) \left ( 2 x + 3 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \left ( 4 x + 6 \right )$
 Bind the expressions with the common factor $2$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 4 x + 6 \right )$
$2 \left ( 2 x - 1 \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right )$
 Bind the expressions with the common factor $2$
$2 \left ( 2 x - 1 \right ) \times \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Arrange the coefficients 
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
Solution search results