# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( 4-y \right) \times \left( -3 \right)$
$3 y - 12$
Organize polynomials
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \times \left ( - 3 \right )$
 Sort the polynomial expressions in descending order 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \times \left ( - 3 \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$3 \left ( y - 4 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \times \left ( - 3 \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \times \left ( - 3 \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \times \left ( - 3 \right )$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \times \left ( - 3 \right )$
$\color{#FF6800}{ - } \left ( y - 4 \right ) \times \left ( \color{#FF6800}{ - } 3 \right )$
 Since negative numbers are multiplied by an even number, remove the (-) sign 
$\left ( y - 4 \right ) \times 3$
$\left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 Sort the factors 
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
Solution search results