Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
$\left( 4+2 \sqrt{ 3 } \right) \left( 4-2 \sqrt{ 3 } \right)$
$4$
Calculate the value
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$ $ Expand the expression using $ \left(a - b\right)\left(a + b\right) = a^{2} - b^{2}$
$\color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 4 } ^ { \color{#FF6800}{ 2 } } - \left ( 2 \sqrt{ 3 } \right ) ^ { 2 }$
$ $ Calculate power $ $
$\color{#FF6800}{ 16 } - \left ( 2 \sqrt{ 3 } \right ) ^ { 2 }$
$16 - \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If the base consists of products of two or more numbers, change to the product of each power $ $
$16 - \left ( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
$16 - \left ( \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \left ( \sqrt{ 3 } \right ) ^ { 2 } \right )$
$ $ Calculate power $ $
$16 - \left ( \color{#FF6800}{ 4 } \left ( \sqrt{ 3 } \right ) ^ { 2 } \right )$
$16 - \left ( 4 \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } } \right )$
$ $ If you square the radical sign, it will disappear $ $
$16 - \left ( 4 \times \color{#FF6800}{ 3 } \right )$
$16 - \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \right )$
$ $ Multiply $ 4 $ and $ 3$
$16 - \color{#FF6800}{ 12 }$
$\color{#FF6800}{ 16 } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$ $ Subtract $ 12 $ from $ 16$
$\color{#FF6800}{ 4 }$
Solution search results
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo