qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\left( 3x-y \right) \left( 3x+y \right) +4 \left( x-2y \right) ^{ 2 }$
$13 x ^ { 2 } - 16 x y + 15 y ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) + 4 \left ( x - 2 y \right ) ^ { 2 }$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + 4 \left ( x - 2 y \right ) ^ { 2 }$
$9 x ^ { 2 } - y ^ { 2 } + 4 \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Expand the binomial expression $ $
$9 x ^ { 2 } - y ^ { 2 } + 4 \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
$9 x ^ { 2 } - y ^ { 2 } + \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Organize the expression with the distributive law $ $
$9 x ^ { 2 } - y ^ { 2 } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ 16 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 1 + 16 \right ) y ^ { 2 } - 16 x y$
$ $ Arrange the constant term $ $
$\color{#FF6800}{ 13 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 1 + 16 \right ) y ^ { 2 } - 16 x y$
$13 x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } - 16 x y$
$ $ Arrange the constant term $ $
$13 x ^ { 2 } + \color{#FF6800}{ 15 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } - 16 x y$
$\color{#FF6800}{ 13 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ x } \color{#FF6800}{ y }$
$ $ Sort the polynomial expressions in descending order $ $
$\color{#FF6800}{ 13 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo