qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$\left( 3x ^{ 2 } -4xy+y ^{ 2 } \right) + \left( -5xy+6x ^{ 2 } -3y ^{ 2 } \right) + \left( -6y ^{ 2 } -8xy-9x ^{ 2 } \right)$
$- 17 x y - 8 y ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Get rid of unnecessary parentheses $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 4 - 5 - 8 \right ) x y + \left ( 1 - 3 - 6 \right ) y ^ { 2 }$
$ $ Organize the mononomial expression $ $
$\color{#FF6800}{ 0 } + \left ( - 4 - 5 - 8 \right ) x y + \left ( 1 - 3 - 6 \right ) y ^ { 2 }$
$0 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } + \left ( 1 - 3 - 6 \right ) y ^ { 2 }$
$ $ Arrange the constant term $ $
$0 \color{#FF6800}{ - } \color{#FF6800}{ 17 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \left ( 1 - 3 - 6 \right ) y ^ { 2 }$
$0 - 17 x y + \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Arrange the constant term $ $
$0 - 17 x y \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 0 } - 17 x y - 8 y ^ { 2 }$
$ $ 0 does not change when you add or subtract $ $
$- 17 x y - 8 y ^ { 2 }$
$- y \left ( 17 x + 8 y \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Expand the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 17 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ 17 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Tie a common factor $ $
$\color{#FF6800}{ - } \color{#FF6800}{ y } \left ( \color{#FF6800}{ 17 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo