Symbol

# Calculator search results

Formula
Expand the expression
Answer
Factorize the expression
Answer
$\left( 3x ^{ 2 } +2x+1 \right) ^{ 3 } \left( x-1 \right)$
$27 x ^ { 7 } + 27 x ^ { 6 } + 9 x ^ { 5 } - 19 x ^ { 4 } - 23 x ^ { 3 } - 15 x ^ { 2 } - 5 x - 1$
Organize polynomials
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 3 } } \left ( x - 1 \right )$
 Expand an equation 
$\left ( \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 54 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 63 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( x - 1 \right )$
$\left ( \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 54 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 63 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 7 } } \color{#FF6800}{ + } \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 19 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ - } \color{#FF6800}{ 23 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\left ( x - 1 \right ) \left ( 3 x ^ { 2 } + 2 x + 1 \right ) ^ { 3 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 3 } } \left ( x - 1 \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 54 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 63 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( x - 1 \right )$
$\left ( \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 54 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 63 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ + } \color{#FF6800}{ 44 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 21 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Sort the factors 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 3 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture