qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$\left( 2x-y \right) ^{ 3 } + \left( 3x+y \right) ^{ 3 }$
$35 x ^ { 3 } + 15 x ^ { 2 } y + 15 x y ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 3 } } + \left ( 3 x + y \right ) ^ { 3 }$
$ $ Expand an equation $ $
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } + \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } + \left ( 3 x + y \right ) ^ { 3 }$
$8 x ^ { 3 } - 12 x ^ { 2 } y + 6 x y ^ { 2 } - y ^ { 3 } + \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 3 } }$
$ $ Expand an equation $ $
$8 x ^ { 3 } - 12 x ^ { 2 } y + 6 x y ^ { 2 } - y ^ { 3 } + \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } + \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 27 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 27 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 27 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } }$
$\left ( \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 27 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \left ( - 12 + 27 \right ) x ^ { 2 } y + \left ( 6 + 9 \right ) x y ^ { 2 } + \left ( - 1 + 1 \right ) y ^ { 3 }$
$ $ Arrange the constant term $ $
$\color{#FF6800}{ 35 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } + \left ( - 12 + 27 \right ) x ^ { 2 } y + \left ( 6 + 9 \right ) x y ^ { 2 } + \left ( - 1 + 1 \right ) y ^ { 3 }$
$35 x ^ { 3 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 27 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } + \left ( 6 + 9 \right ) x y ^ { 2 } + \left ( - 1 + 1 \right ) y ^ { 3 }$
$ $ Arrange the constant term $ $
$35 x ^ { 3 } + \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } + \left ( 6 + 9 \right ) x y ^ { 2 } + \left ( - 1 + 1 \right ) y ^ { 3 }$
$35 x ^ { 3 } + 15 x ^ { 2 } y + \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \left ( - 1 + 1 \right ) y ^ { 3 }$
$ $ Arrange the constant term $ $
$35 x ^ { 3 } + 15 x ^ { 2 } y + \color{#FF6800}{ 15 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \left ( - 1 + 1 \right ) y ^ { 3 }$
$35 x ^ { 3 } + 15 x ^ { 2 } y + 15 x y ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 3 } }$
$ $ Organize the mononomial expression $ $
$35 x ^ { 3 } + 15 x ^ { 2 } y + 15 x y ^ { 2 } + \color{#FF6800}{ 0 }$
$35 x ^ { 3 } + 15 x ^ { 2 } y + 15 x y ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
$ $ 0 does not change when you add or subtract $ $
$35 x ^ { 3 } + 15 x ^ { 2 } y + 15 x y ^ { 2 }$
$5 x \left ( 7 x ^ { 2 } + 3 x y + 3 y ^ { 2 } \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 3 } }$
$ $ Expand the expression $ $
$\color{#FF6800}{ 35 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 35 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 15 } \color{#FF6800}{ x } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Tie a common factor $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 7 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-
ty given below. 
$3x+y\leq 6$ 
$D$ $ \begin{cases} 3x+y \\ 2x-y \end{cases} $ 
$\left(2x-y\leq 8$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo