Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
$\left( 2x-3y \right) \left( 3x+4y \right)$
$6 x ^ { 2 } - x y - 12 y ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-$x$ $y$ $xy$ $x$ 
$\left(5\right)$ $\dfrac {1} {2\left(3x+4y\right)}+\dfrac {1} {5\left(2x-3y\right)}=\dfrac {1} {4}$ $\dfrac {5} {\left(3x+4y\right)}-\dfrac {2} {\left(2x-3y\right)}=-\dfrac {3} {2}$ 
lve the following word problems.
10th-13th grade
Other
search-thumbnail-Solve the following equation algebraically 
$\dfrac {1} {2\left(3x+4y\right)}+\dfrac {1} {5\left(2x-3y\right)}=\dfrac {1} {4}$ $\dfrac {5} {\left(3x+4y\right)}$ $\dfrac {2} {\left(2x-3y\right)}=\dfrac {1} {10}$
10th-13th grade
Other
search-thumbnail-
$\bar{2\left(3x+4y\right)} ^{+}$ $\dfrac {1} {5\left(2x-3y\right)}=\dfrac {1} {4}$ $\dfrac {5} {\left(3x+4y\right)}$ $\dfrac {2} {\left(2x-3y\right)}=-\dfrac {2} {2}$ 
e the follo
10th-13th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo