Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( 2x+5 \right) - \left( 3x+1 \right)$
$- x + 4$
Organize polynomials
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$2 x + 5 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$2 x + 5 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } + \left ( 5 - 1 \right )$
 Organize the mononomial expression 
$\color{#FF6800}{ - } \color{#FF6800}{ x } + \left ( 5 - 1 \right )$
$- x + \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Arrange the constant term 
$- x + \color{#FF6800}{ 4 }$
$- \left ( x - 4 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture