# Calculator search results

Formula
Solve the equation
Graph
$y = \left ( 2 x + 5 \right ) \left ( 2 x - 5 \right ) - 7 x$
$y = \dfrac { 20 \left ( x ^ { 2 } + 1 \right ) } { 5 }$
$x$Intercept
$\left ( \dfrac { 7 } { 8 } + \dfrac { \sqrt{ 449 } } { 8 } , 0 \right )$, $\left ( \dfrac { 7 } { 8 } - \dfrac { \sqrt{ 449 } } { 8 } , 0 \right )$
$y$Intercept
$\left ( 0 , - 25 \right )$
Minimum
$\left ( \dfrac { 7 } { 8 } , - \dfrac { 449 } { 16 } \right )$
Standard form
$y = 4 \left ( x - \dfrac { 7 } { 8 } \right ) ^ { 2 } - \dfrac { 449 } { 16 }$
$y$Intercept
$\left ( 0 , 4 \right )$
Minimum
$\left ( 0 , 4 \right )$
Standard form
$y = 4 x ^ { 2 } + 4$
$\left( 2x+5 \right) \left( 2x-5 \right) -7x = \dfrac{ 20 \left( x ^{ 2 } +1 \right) }{ 5 }$
$x = - \dfrac { 29 } { 7 }$
 Solve a solution to $x$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) - 7 x = \dfrac { 20 \left ( x ^ { 2 } + 1 \right ) } { 5 }$
 Use the law of distribution 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 25 } - 7 x = \dfrac { 20 \left ( x ^ { 2 } + 1 \right ) } { 5 }$
$4 x ^ { 2 } - 25 - 7 x = \dfrac { \color{#FF6800}{ 20 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) } { 5 }$
 Multiply each term in parentheses by $20$
$4 x ^ { 2 } - 25 - 7 x = \dfrac { \color{#FF6800}{ 20 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 20 } } { 5 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 25 } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } = \dfrac { 20 x ^ { 2 } + 20 } { 5 }$
 Organize the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 25 } = \dfrac { 20 x ^ { 2 } + 20 } { 5 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 25 } = \color{#FF6800}{ \dfrac { 20 x ^ { 2 } + 20 } { 5 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 35 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 125 } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 35 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 125 } = \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 20 }$
 Organize the expression 
$\color{#FF6800}{ 35 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 145 }$
$\color{#FF6800}{ 35 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 145 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 29 } { 7 } }$
 그래프 보기 
Graph
Solution search results