qanda-logo
search-icon
Symbol

Calculator search results

Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$8 x ^ { 2 } + 18 y ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } + \left ( 2 x - 3 y \right ) ^ { 2 }$
$ $ Expand the binomial expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ 9 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } + \left ( 2 x - 3 y \right ) ^ { 2 }$
$4 x ^ { 2 } + 12 x y + 9 y ^ { 2 } + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Expand the binomial expression $ $
$4 x ^ { 2 } + 12 x y + 9 y ^ { 2 } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ y } + \color{#FF6800}{ 9 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( 12 - 12 \right ) x y + \left ( 9 + 9 \right ) y ^ { 2 }$
$ $ Arrange the constant term $ $
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( 12 - 12 \right ) x y + \left ( 9 + 9 \right ) y ^ { 2 }$
$8 x ^ { 2 } + \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ y } + \left ( 9 + 9 \right ) y ^ { 2 }$
$ $ Organize the mononomial expression $ $
$8 x ^ { 2 } + \color{#FF6800}{ 0 } + \left ( 9 + 9 \right ) y ^ { 2 }$
$8 x ^ { 2 } + 0 + \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Arrange the constant term $ $
$8 x ^ { 2 } + 0 + \color{#FF6800}{ 18 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$8 x ^ { 2 } \color{#FF6800}{ + } \color{#FF6800}{ 0 } + 18 y ^ { 2 }$
$ $ 0 does not change when you add or subtract $ $
$8 x ^ { 2 } + 18 y ^ { 2 }$
$2 \left ( 4 x ^ { 2 } + 9 y ^ { 2 } \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ Expand the expression $ $
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$ $ Tie a common factor $ $
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture