Calculator search results
Formula
Calculate the value
Answer
See the solving process
Use the synthetic division to find the quotient and the remainder
Answer
See the solving process
$\left( 2x ^{ 3 } -3x ^{ 2 } +3x+1 \right) \div \left( 2x-1 \right)$
$\dfrac { 2 x ^ { 3 } - 3 x ^ { 2 } + 3 x + 1 } { 2 x - 1 }$
Arrange the rational expression
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { 2 x ^ { 3 } - 3 x ^ { 2 } + 3 x + 1 } { 2 x - 1 } }$
$ $ Quotient $ : x ^ { 2 } - x + 1 \\ $ Remainder $ : 2$
Use the synthetic division to find the quotient and the remainder
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Divide $ 2 x ^ { 3 } - 3 x ^ { 2 } + 3 x + 1 $ by $ 2 x - 1 $ using the synthetic division $ $
$ $ Quotient $ : x ^ { 2 } - x + 1 \\ $ Remainder $ : 2$
Solution search results
10th-13th grade
Algebra
Check solution
Calculus
Check solution
Other
Check solution
10th-13th grade
Trigonometry
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture