# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( 2b-3c \right) \left( 3c+2b \right)$
$4 b ^ { 2 } - 9 c ^ { 2 }$
Organize polynomials
$\left ( 2 b - 3 c \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \right )$
 Sort the polynomial expressions in descending order 
$\left ( 2 b - 3 c \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ c } \right )$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ c } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ c } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 4 } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ c } ^ { \color{#FF6800}{ 2 } }$
$\left ( 2 b - 3 c \right ) \left ( 2 b + 3 c \right )$
Arrange the expression in the form of factorization..
$\left ( 2 b - 3 c \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ b } \right )$
 Organize the expression 
$\left ( 2 b - 3 c \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ c } \right )$
Solution search results