Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$\left( 2+3 \sqrt{ 5 } \right) \left( 3- \sqrt{ 5 } \right)$
$- 9 + 7 \sqrt{ 5 }$
Calculate the value
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right )$
$ $ Expand using $ \left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right )$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + 2 \times \left ( - \sqrt{ 5 } \right ) + \left ( 3 \sqrt{ 5 } \right ) \times 3 + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$ $ Multiply $ 2 $ and $ 3$
$\color{#FF6800}{ 6 } + 2 \times \left ( - \sqrt{ 5 } \right ) + \left ( 3 \sqrt{ 5 } \right ) \times 3 + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$6 + \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right ) + \left ( 3 \sqrt{ 5 } \right ) \times 3 + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$ $ Simplify the expression $ $
$6 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \times 3 + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$6 - 2 \sqrt{ 5 } + \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$ $ Get rid of unnecessary parentheses $ $
$6 - 2 \sqrt{ 5 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$6 - 2 \sqrt{ 5 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$ $ Simplify the expression $ $
$6 - 2 \sqrt{ 5 } + \color{#FF6800}{ 9 } \sqrt{ \color{#FF6800}{ 5 } } + \left ( 3 \sqrt{ 5 } \right ) \times \left ( - \sqrt{ 5 } \right )$
$6 - 2 \sqrt{ 5 } + 9 \sqrt{ 5 } + \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right )$
$ $ Get rid of unnecessary parentheses $ $
$6 - 2 \sqrt{ 5 } + 9 \sqrt{ 5 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right )$
$6 - 2 \sqrt{ 5 } + 9 \sqrt{ 5 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 5 } } \right )$
$ $ Simplify the expression $ $
$6 - 2 \sqrt{ 5 } + 9 \sqrt{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 15 }$
$\color{#FF6800}{ 6 } - 2 \sqrt{ 5 } + 9 \sqrt{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 15 }$
$ $ Subtract $ 15 $ from $ 6$
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } - 2 \sqrt{ 5 } + 9 \sqrt{ 5 }$
$- 9 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \sqrt{ \color{#FF6800}{ 5 } }$
$ $ Calculate between similar terms $ $
$- 9 + \color{#FF6800}{ 7 } \sqrt{ \color{#FF6800}{ 5 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo