# Calculator search results

Formula
Calculate the value
$\left( 2 \sqrt{ 6 } +1 \right) \left( \sqrt{ 6 } -3 \right)$
$9 - 5 \sqrt{ 6 }$
Calculate the value
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right )$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \sqrt{ \color{#FF6800}{ 6 } } + \left ( 2 \sqrt{ 6 } \right ) \times \left ( - 3 \right ) + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ \color{#FF6800}{ 6 } } + \left ( 2 \sqrt{ 6 } \right ) \times \left ( - 3 \right ) + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \sqrt{ \color{#FF6800}{ 6 } } + \left ( 2 \sqrt{ 6 } \right ) \times \left ( - 3 \right ) + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
 Simplify the expression 
$\color{#FF6800}{ 12 } + \left ( 2 \sqrt{ 6 } \right ) \times \left ( - 3 \right ) + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
$12 + \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
 Get rid of unnecessary parentheses 
$12 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
$12 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
 Simplify the expression 
$12 \color{#FF6800}{ - } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 6 } } + 1 \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
$12 - 6 \sqrt{ 6 } + \color{#FF6800}{ 1 } \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
 Multiplying any number by 1 does not change the value 
$12 - 6 \sqrt{ 6 } + \sqrt{ 6 } + 1 \times \left ( - 3 \right )$
$12 - 6 \sqrt{ 6 } + \sqrt{ 6 } + \color{#FF6800}{ 1 } \times \left ( - 3 \right )$
 Multiplying any number by 1 does not change the value 
$12 - 6 \sqrt{ 6 } + \sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 12 } - 6 \sqrt{ 6 } + \sqrt{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Subtract $3$ from $12$
$\color{#FF6800}{ 9 } - 6 \sqrt{ 6 } + \sqrt{ 6 }$
$9 \color{#FF6800}{ - } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 6 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 6 } }$
 Calculate between similar terms 
$9 \color{#FF6800}{ - } \color{#FF6800}{ 5 } \sqrt{ \color{#FF6800}{ 6 } }$
Solution search results