$\left ( 2 \sqrt{ 15 } - \sqrt{ \color{#FF6800}{ 24 } } \right ) \div \sqrt{ 3 }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\left ( 2 \sqrt{ 15 } - \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \right ) \div \sqrt{ 3 }$
$\left ( 2 \sqrt{ 15 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \right ) \div \sqrt{ 3 }$
$ $ Get rid of unnecessary parentheses $ $
$\left ( 2 \sqrt{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \div \sqrt{ 3 }$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \color{#FF6800}{ \div } \sqrt{ \color{#FF6800}{ 3 } }$
$ $ Present division as a fraction $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } } { \sqrt{ \color{#FF6800}{ 3 } } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } } { \sqrt{ \color{#FF6800}{ 3 } } } }$
$ $ Calculate the expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } } { \color{#FF6800}{ 3 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } } { \color{#FF6800}{ 3 } } }$
$ $ Reduce the fraction $ $
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } }$