# Calculator search results

Formula
Calculate the value
$\left( 2 \sqrt{ 15 } - \sqrt{ 24 } \right) \div \sqrt{ 3 }$
$2 \sqrt{ 5 } - 2 \sqrt{ 2 }$
Calculate the value
$\left ( 2 \sqrt{ 15 } - \sqrt{ \color{#FF6800}{ 24 } } \right ) \div \sqrt{ 3 }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$\left ( 2 \sqrt{ 15 } - \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \right ) \div \sqrt{ 3 }$
$\left ( 2 \sqrt{ 15 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \right ) \div \sqrt{ 3 }$
 Get rid of unnecessary parentheses 
$\left ( 2 \sqrt{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \div \sqrt{ 3 }$
$\left ( \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 15 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 6 } } \right ) \color{#FF6800}{ \div } \sqrt{ \color{#FF6800}{ 3 } }$
 Present division as a fraction 
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 15 } - 2 \sqrt{ 6 } } { \sqrt{ 3 } } }$
$\color{#FF6800}{ \dfrac { 2 \sqrt{ 15 } - 2 \sqrt{ 6 } } { \sqrt{ 3 } } }$
 Calculate the expression 
$\color{#FF6800}{ \dfrac { 6 \sqrt{ 5 } - 6 \sqrt{ 2 } } { 3 } }$
$\color{#FF6800}{ \dfrac { 6 \sqrt{ 5 } - 6 \sqrt{ 2 } } { 3 } }$
 Reduce the fraction 
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 5 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } }$
Solution search results