qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Multiply the numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Organize using the law of exponent
Answer
circle-check-icon
expand-arrow-icon
$\left( 10 \right) \left( 10 \right) \left( 10 \right) \left( 10 \right)$
$10000$
Multiply the numbers
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \times 10 \times 10$
$ $ Multiply $ 10 $ and $ 10$
$\color{#FF6800}{ 100 } \times 10 \times 10$
$\color{#FF6800}{ 100 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \times 10$
$ $ Multiply $ 100 $ and $ 10$
$\color{#FF6800}{ 1000 } \times 10$
$\color{#FF6800}{ 1000 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 }$
$ $ Multiply $ 1000 $ and $ 10$
$\color{#FF6800}{ 10000 }$
$25$
Find the number of divisors
$\color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 5 \times 5$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$ $ Find the sum $ $
$2 ^ { \color{#FF6800}{ 4 } } \times 5 \times 5 \times 5 \times 5$
$2 ^ { 4 } \times \color{#FF6800}{ 5 } \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5$
$2 ^ { 4 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5$
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5$
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 4 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 4 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 4 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$2 ^ { 4 } \times 5 ^ { \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 25 }$
$2 ^ { 4 } \times 5 ^ { 4 }$
Organize using the law of exponent
$\color{#FF6800}{ 10 } \times 10 \times 10 \times 10$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 } \times 10 \times 10 \times 10$
$2 \times 5 \times \color{#FF6800}{ 10 } \times 10 \times 10$
$ $ Represents an integer as a product of decimal numbers $ $
$2 \times 5 \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 } \times 10 \times 10$
$2 \times 5 \times 2 \times 5 \times \color{#FF6800}{ 10 } \times 10$
$ $ Represents an integer as a product of decimal numbers $ $
$2 \times 5 \times 2 \times 5 \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 } \times 10$
$2 \times 5 \times 2 \times 5 \times 2 \times 5 \times \color{#FF6800}{ 10 }$
$ $ Represents an integer as a product of decimal numbers $ $
$2 \times 5 \times 2 \times 5 \times 2 \times 5 \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 5 }$
$\color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 5 \times 5 \times 5 \times 5$
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 5 \times 5 \times 5 \times 5$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 5 \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5 \times 5$
$ $ Find the sum $ $
$2 ^ { \color{#FF6800}{ 4 } } \times 5 \times 5 \times 5 \times 5$
$2 ^ { 4 } \times \color{#FF6800}{ 5 } \times 5 \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5 \times 5$
$2 ^ { 4 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 5 \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5 \times 5$
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } \times 5$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times 5$
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 4 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times 5 ^ { 1 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 4 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 4 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 4 } \times 5 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$2 ^ { 4 } \times 5 ^ { \color{#FF6800}{ 4 } }$
$10 ^ { 4 }$
Organize using the law of exponent
$\color{#FF6800}{ 10 } \times 10 \times 10 \times 10$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 10 \times 10 \times 10$
$10 ^ { 1 } \times \color{#FF6800}{ 10 } \times 10 \times 10$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$10 ^ { 1 } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 10 \times 10$
$10 ^ { 1 } \times 10 ^ { 1 } \times \color{#FF6800}{ 10 } \times 10$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$10 ^ { 1 } \times 10 ^ { 1 } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times 10$
$10 ^ { 1 } \times 10 ^ { 1 } \times 10 ^ { 1 } \times \color{#FF6800}{ 10 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$10 ^ { 1 } \times 10 ^ { 1 } \times 10 ^ { 1 } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$10 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$10 ^ { \color{#FF6800}{ 4 } }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Given the set of ordered pairs $\left(\left(-7.0\right),\left(-6,5\right),\left(-5,-3\right),\left(-1,2\right)$ $\left(1,6\right),\left(2,-2\right)$ $\left(5,3\right)\left(7,-8\right)\right)$ 
Find f(7)fAleft(7\right) 
O a 
O b -8 
6. 
$5$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo