$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 3 } }$
$ $ Bind only the least squares separately to form a monomial from a binomial containing imaginary numbers $ $
$\left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ i } \right )$
$\left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 2 } } \right ) ^ { 1 } \left ( 1 - i \right )$
$ $ Expand the square of a binomial including imaginary numbers $ $
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ i } \right ) ^ { 1 } \left ( 1 - i \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 1 } } \left ( 1 - i \right )$
$ $ Solve the power $ $
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ i } ^ { \color{#FF6800}{ 1 } } \left ( 1 - i \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 1 } } i ^ { 1 } \left ( 1 - i \right )$
$ $ Move the (-) sign forward as it does not disappear if the (-) sign is powered to an odd number of times $ $
$\color{#FF6800}{ - } 2 ^ { 1 } i ^ { 1 } \left ( 1 - i \right )$
$- 2 ^ { \color{#FF6800}{ 1 } } i ^ { 1 } \left ( 1 - i \right )$
$ $ If the exponent is 1, get rid of it as it is unnecessary $ $
$- 2 i ^ { 1 } \left ( 1 - i \right )$
$- 2 i ^ { \color{#FF6800}{ 1 } } \left ( 1 - i \right )$
$ $ If the exponent is 1, get rid of it as it is unnecessary $ $
$- 2 i \left ( 1 - i \right )$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ i } \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ i } \right )$
$ $ Expand the expression to calculate the value $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ i } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$