# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( 1-c \right) \left( 1-a \right) \left( 1-b \right)$
$- a b c + a b + a c - a + b c - b - c + 1$
Organize polynomials
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \left ( 1 - a \right ) \left ( 1 - b \right )$
 Sort the polynomial expressions in descending order 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 1 - a \right ) \left ( 1 - b \right )$
$\left ( - c + 1 \right ) \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( 1 - b \right )$
 Sort the polynomial expressions in descending order 
$\left ( - c + 1 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 1 - b \right )$
$\left ( - c + 1 \right ) \left ( - a + 1 \right ) \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ b } \right )$
 Sort the polynomial expressions in descending order 
$\left ( - c + 1 \right ) \left ( - a + 1 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( - b + 1 \right )$
 Organize the expression with the distributive law 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( - b + 1 \right )$
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$- \left ( a - 1 \right ) \left ( b - 1 \right ) \left ( c - 1 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ c } \right ) \left ( 1 - a \right ) \left ( 1 - b \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 1 - a \right ) \left ( 1 - b \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ c } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 1 - a \right ) \left ( 1 - b \right )$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 1 - a \right ) \left ( 1 - b \right )$
$- \left ( c - 1 \right ) \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ a } \right ) \left ( 1 - b \right )$
 Expand the expression 
$- \left ( c - 1 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 1 - b \right )$
$- \left ( c - 1 \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 1 - b \right )$
 Bind the expressions with the common factor $- 1$
$- \left ( c - 1 \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right ) \left ( 1 - b \right )$
$- \left ( c - 1 \right ) \times \left ( - \left ( a - 1 \right ) \right ) \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ b } \right )$
 Expand the expression 
$- \left ( c - 1 \right ) \times \left ( - \left ( a - 1 \right ) \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$- \left ( c - 1 \right ) \times \left ( - \left ( a - 1 \right ) \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Bind the expressions with the common factor $- 1$
$- \left ( c - 1 \right ) \times \left ( - \left ( a - 1 \right ) \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
$\color{#FF6800}{ - } \left ( c - 1 \right ) \times \left ( \color{#FF6800}{ - } \left ( a - 1 \right ) \right ) \times \left ( \color{#FF6800}{ - } \left ( b - 1 \right ) \right )$
 If you multiply negative numbers by odd numbers, move the (-) sign forward 
$- \left ( c - 1 \right ) \left ( a - 1 \right ) \left ( b - 1 \right )$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Sort the factors 
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ c } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Solution search results