Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( 1-3x \right) \left( 3x+4 \right)$
$- 9 x ^ { 2 } - 9 x + 4$
Organize polynomials
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \left ( 3 x + 4 \right )$
 Sort the polynomial expressions in descending order 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 3 x + 4 \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$- \left ( 3 x - 1 \right ) \left ( 3 x + 4 \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \left ( 3 x + 4 \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 3 x + 4 \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \left ( 3 x + 4 \right )$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 3 x + 4 \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture