# Calculator search results

Formula
Calculate the value
$\left( 1- \sqrt{ 3 } \right) \left( 2- \sqrt{ 3 } \right)$
$5 - 3 \sqrt{ 3 }$
Calculate the value
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right )$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\color{#FF6800}{ 1 } \times 2 + 1 \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
 Multiplying any number by 1 does not change the value 
$\color{#FF6800}{ 2 } + 1 \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$2 + \color{#FF6800}{ 1 } \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
 Multiplying any number by 1 does not change the value 
$2 - \sqrt{ 3 } - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$2 - \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
 Simplify the expression 
$2 - \sqrt{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ 3 } \times \left ( \color{#FF6800}{ - } \sqrt{ 3 } \right )$
 Since negative numbers are multiplied by an even number, remove the (-) sign 
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \sqrt{ 3 } \sqrt{ 3 }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ 3 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 3 }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 3 } }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 2 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 If you square the radical sign, it will disappear 
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } - \sqrt{ 3 } - 2 \sqrt{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
 Add $2$ and $3$
$\color{#FF6800}{ 5 } - \sqrt{ 3 } - 2 \sqrt{ 3 }$
$5 \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } }$
 Calculate between similar terms 
$5 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } }$
Solution search results