Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\left( 1- \sqrt{ 3 } \right) \left( 2- \sqrt{ 3 } \right)$
$5 - 3 \sqrt{ 3 }$
Calculate the value
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$ $ Expand using $ \left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\color{#FF6800}{ 1 } \times 2 + 1 \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$ $ Multiplying any number by 1 does not change the value $ $
$\color{#FF6800}{ 2 } + 1 \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$2 + \color{#FF6800}{ 1 } \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$ $ Multiplying any number by 1 does not change the value $ $
$2 - \sqrt{ 3 } - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$2 - \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$ $ Simplify the expression $ $
$2 - \sqrt{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } - \sqrt{ 3 } \times \left ( - \sqrt{ 3 } \right )$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ 3 } \times \left ( \color{#FF6800}{ - } \sqrt{ 3 } \right )$
$ $ Since negative numbers are multiplied by an even number, remove the (-) sign $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \sqrt{ 3 } \sqrt{ 3 }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 3 }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 3 } }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 2 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If you square the radical sign, it will disappear $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } - \sqrt{ 3 } - 2 \sqrt{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$ $ Add $ 2 $ and $ 3$
$\color{#FF6800}{ 5 } - \sqrt{ 3 } - 2 \sqrt{ 3 }$
$5 \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } }$
$ $ Calculate between similar terms $ $
$5 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } }$
Solution search results
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-$8 \times $ 
$ = $ In $ \dfrac { E } { 8 } $ $ \left. \begin{array} { l } { \dfrac { 1 } { 3 } } \\ { \dfrac { 11 } { 3 } } \end{array} \right. $ $ \left. \begin{array} { l } { \dfrac { 1 } { 1 } } \\ { \dfrac { 1 } { 1 } } \end{array} \right. $ and $ \left. \begin{array} { l } { δ } \\ { 8 } \end{array} \right. $ 
Find the length of PR. $ \bar { I } $ 
$0$ 
$ \bar { u } $ 
$2$ $ = $ $ \| = $
7th-9th grade
Other
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo