qanda-logo
search-icon
Symbol

Calculator search results

Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$5 - 3 \sqrt{ 3 }$
Calculate the value
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$ $ Expand using $ \left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right ) \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \left ( \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \right )$
$\color{#FF6800}{ 1 } \times 2 + 1 \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \left ( - \sqrt{ 3 } \right )$
$ $ Multiplying any number by 1 does not change the value $ $
$\color{#FF6800}{ 2 } + 1 \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \left ( - \sqrt{ 3 } \right )$
$2 + \color{#FF6800}{ 1 } \times \left ( - \sqrt{ 3 } \right ) - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \left ( - \sqrt{ 3 } \right )$
$ $ Multiplying any number by 1 does not change the value $ $
$2 - \sqrt{ 3 } - \sqrt{ 3 } \times 2 - \sqrt{ 3 } \left ( - \sqrt{ 3 } \right )$
$2 - \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } - \sqrt{ 3 } \left ( - \sqrt{ 3 } \right )$
$ $ Simplify the expression $ $
$2 - \sqrt{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } - \sqrt{ 3 } \left ( - \sqrt{ 3 } \right )$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } \color{#FF6800}{ - } \sqrt{ 3 } \left ( \color{#FF6800}{ - } \sqrt{ 3 } \right )$
$ $ Since negative numbers are multiplied by an even number, remove the (-) sign $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \sqrt{ 3 } \sqrt{ 3 }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 3 }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 3 } }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ 3 } \right ) ^ { \color{#FF6800}{ 2 } }$
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \left ( \sqrt{ \color{#FF6800}{ 3 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If you square the radical sign, it will disappear $ $
$2 - \sqrt{ 3 } - 2 \sqrt{ 3 } + \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } - \sqrt{ 3 } - 2 \sqrt{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 }$
$ $ Add $ 2 $ and $ 3$
$\color{#FF6800}{ 5 } - \sqrt{ 3 } - 2 \sqrt{ 3 }$
$5 \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } }$
$ $ Calculate between similar terms $ $
$5 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 3 } }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture