Symbol

# Calculator search results

Formula
Calculate the expression with imaginary numbers
$\left( 1+i \right) ^{ 4 }$
$- 4$
Expand of the Nth square expression regarding a complex number
$\left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 4 } }$
 Bind only the least squares separately to form a monomial from a binomial containing imaginary numbers 
$\left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
$\left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 2 } } \right ) ^ { 2 }$
 Expand the square of a binomial including imaginary numbers 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ i } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ i } \right ) ^ { \color{#FF6800}{ 2 } }$
 Solve the power 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ i } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } i ^ { 2 }$
 Calculate power 
$\color{#FF6800}{ 4 } i ^ { 2 }$
$4 \color{#FF6800}{ i } ^ { \color{#FF6800}{ 2 } }$
 It is $i^2 = -1$
$4 \times \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Multiply $4$ and $- 1$
$\color{#FF6800}{ - } \color{#FF6800}{ 4 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture