# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( -x-y \right) ^{ 2 }$
$x ^ { 2 } + 2 x y + y ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the binomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\left ( x + y \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) ^ { 2 }$
 Bind the expressions with the common factor $- 1$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) \right ) ^ { \color{#FF6800}{ 2 } }$
 Arrange the symbol inside the power 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results