qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
$\left( -8x+5y \right) \left( -8x-5y \right)$
$64 x ^ { 2 } - 25 y ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 64 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 25 } \color{#FF6800}{ y } ^ { \color{#FF6800}{ 2 } }$
$\left ( 8 x - 5 y \right ) \left ( 8 x + 5 y \right )$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \right ) \left ( - 8 x - 5 y \right )$
$ $ Bind the expressions with the common factor $ - 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \right ) \left ( - 8 x - 5 y \right )$
$- \left ( 8 x - 5 y \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \right )$
$ $ Bind the expressions with the common factor $ - 1$
$- \left ( 8 x - 5 y \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ y } \right ) \right )$
$\color{#FF6800}{ - } \left ( 8 x - 5 y \right ) \times \left ( \color{#FF6800}{ - } \left ( 8 x + 5 y \right ) \right )$
$ $ Since negative numbers are multiplied by an even number, remove the (-) sign $ $
$\left ( 8 x - 5 y \right ) \left ( 8 x + 5 y \right )$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo