$\color{#FF6800}{ - } 8 \times \left ( \color{#FF6800}{ - } \dfrac { 9 } { 4 } \right )$
$ $ Since negative numbers are multiplied by an even number, remove the (-) sign $ $
$8 \times \dfrac { 9 } { 4 }$
$\color{#FF6800}{ 8 } \times \dfrac { 9 } { 4 }$
$ $ Natural numbers can be expressed as fractions with a denominator of 1 $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 8 } } { \color{#FF6800}{ 1 } } } \times \dfrac { 9 } { 4 }$
$\dfrac { \color{#FF6800}{ 8 } } { 1 } \times \dfrac { 9 } { \color{#FF6800}{ 4 } }$
$ $ Reduce all denominators and numerators that can be reduced $ $
$\dfrac { \color{#FF6800}{ 2 } } { 1 } \times \dfrac { 9 } { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } } { \color{#FF6800}{ 1 } } } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 9 } } { \color{#FF6800}{ 1 } } }$
$ $ numerator multiply between numerator, and denominators multiply between denominators $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 9 } } { \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 1 } } }$
$\dfrac { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 9 } } { 1 \times 1 }$
$ $ Multiply $ 2 $ and $ 9$
$\dfrac { \color{#FF6800}{ 18 } } { 1 \times 1 }$
$\dfrac { 18 } { \color{#FF6800}{ 1 } \times 1 }$
$ $ Multiplying any number by 1 does not change the value $ $
$\dfrac { 18 } { \color{#FF6800}{ 1 } }$
$\dfrac { 18 } { \color{#FF6800}{ 1 } }$
$ $ If the denominator is 1, the denominator can be removed $ $
$\color{#FF6800}{ 18 }$