# Calculator search results

Formula
Expand the expression
Factorize the expression
$\left( -4a+b \right) ^{ 2 }$
$16 a ^ { 2 } - 8 a b + b ^ { 2 }$
Organize polynomials
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } }$
 Expand the binomial expression 
$\color{#FF6800}{ 16 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ a } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } }$
$\left ( 4 a - b \right ) ^ { 2 }$
Arrange the expression in the form of factorization..
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ b } \right ) ^ { 2 }$
 Bind the expressions with the common factor $- 1$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) \right ) ^ { \color{#FF6800}{ 2 } }$
 Arrange the symbol inside the power 
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ b } \right ) ^ { \color{#FF6800}{ 2 } }$
Solution search results