# Calculator search results

Formula
Calculate the value
Use the synthetic division to find the quotient and the remainder
$\left( -2x ^{ 3 } -x ^{ 2 } +4x-2 \right) \div \left( 2x+1 \right)$
$- \dfrac { 2 x ^ { 3 } + x ^ { 2 } - 4 x + 2 } { 2 x + 1 }$
Arrange the rational expression
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Calculate the multiplication expression 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x ^ { 3 } + x ^ { 2 } - 4 x + 2 } { 2 x + 1 } }$
 Quotient $: 2 - x ^ { 2 } \\$ Remainder $: - 4$
Use the synthetic division to find the quotient and the remainder
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ \div } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Divide $- 2 x ^ { 3 } - x ^ { 2 } + 4 x - 2$ by $2 x + 1$ using the synthetic division 
 Quotient $: 2 - x ^ { 2 } \\$ Remainder $: - 4$
Solution search results