Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
Use the synthetic division to find the quotient and the remainder
Answer
circle-check-icon
$\left( -2x ^{ 3 } -4x ^{ 2 } +3x+1 \right) \div \left( x-1 \right)$
$- \dfrac { 2 x ^ { 3 } + 4 x ^ { 2 } - 3 x - 1 } { x - 1 }$
Arrange the rational expression
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \div } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 x ^ { 3 } + 4 x ^ { 2 } - 3 x - 1 } { x - 1 } }$
$ $ Quotient $ : - 2 x ^ { 2 } - 6 x - 3 \\ $ Remainder $ : - 2$
Use the synthetic division to find the quotient and the remainder
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ \div } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Divide $ - 2 x ^ { 3 } - 4 x ^ { 2 } + 3 x + 1 $ by $ x - 1 $ using the synthetic division $ $
$ $ Quotient $ : - 2 x ^ { 2 } - 6 x - 3 \\ $ Remainder $ : - 2$
Solution search results
search-thumbnail-(iii) $x^{3}-3x$ $1,x$ $x^{3}-4x^{3}+x^{2}+3x+1$
1st-6th grade
Algebra
search-thumbnail-$=$ 
$23$ The equation whose roots are squares of the roots of $x^{4}+x^{3}+2x^{2}+x+1=0$ is 
$1\right)$ $x^{4}-3x^{3}+4x^{2}+3x+1=0$ $2\right)$ $x^{4}+3x^{3}+4x^{2}+3x+1=0$ 
$3\right)$ $x^{4}-3x^{3}-4x^{2}+3x+1=0$ $4\right)$ $x^{4}-3x^{3}-4x^{2}-3x+1=0$
10th-13th grade
Algebra
search-thumbnail-
$23$ The equation whose roots are squares of the roots $OFx^{4}+$ $x^{4}+x^{3}+2x^{2}+x+1=0$ is 
$1\right)x^{4}-3x^{3}+4x^{2}+3x+1=0$ $2\right)$ $x^{4}+3x^{3}+4x^{2}+3x+1=0$ 
$3\right)$ $x^{4}-3x^{3}-4x^{2}+3x+1=0$ $4\right)$ $x^{4}-3x^{3}-4x^{2}-3x+1=0$
10th-13th grade
Algebra
search-thumbnail-$\left(i\right)$ $x^{2}+3x+1,3x^{4}+5x^{3}-7x^{2}+2x+2$ 
$\left(iii\right)$ $x^{3}-3x+1,x^{3}-4x^{3}+x^{2}+3x+$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo