$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 2 } } \div \left ( \dfrac { 5 } { 3 } - \left ( - 1 \right ) ^ { 4 } \right ) - 6 \times \dfrac { 1 } { 3 }$
$ $ Remove negative signs because negative numbers raised to even powers are positive $ $
$2 ^ { 2 } \div \left ( \dfrac { 5 } { 3 } - \left ( - 1 \right ) ^ { 4 } \right ) - 6 \times \dfrac { 1 } { 3 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \div \left ( \dfrac { 5 } { 3 } - \left ( - 1 \right ) ^ { 4 } \right ) - 6 \times \dfrac { 1 } { 3 }$
$ $ Calculate power $ $
$\color{#FF6800}{ 4 } \div \left ( \dfrac { 5 } { 3 } - \left ( - 1 \right ) ^ { 4 } \right ) - 6 \times \dfrac { 1 } { 3 }$
$4 \div \left ( \dfrac { 5 } { 3 } - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 4 } } \right ) - 6 \times \dfrac { 1 } { 3 }$
$ $ Remove negative signs because negative numbers raised to even powers are positive $ $
$4 \div \left ( \dfrac { 5 } { 3 } - 1 ^ { 4 } \right ) - 6 \times \dfrac { 1 } { 3 }$
$4 \div \left ( \dfrac { 5 } { 3 } - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 4 } } \right ) - 6 \times \dfrac { 1 } { 3 }$
$ $ Calculate power $ $
$4 \div \left ( \dfrac { 5 } { 3 } - \color{#FF6800}{ 1 } \right ) - 6 \times \dfrac { 1 } { 3 }$
$4 \div \left ( \color{#FF6800}{ \dfrac { 5 } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - 6 \times \dfrac { 1 } { 3 }$
$ $ Subtract $ 1 $ from $ \dfrac { 5 } { 3 }$
$4 \div \color{#FF6800}{ \dfrac { 2 } { 3 } } - 6 \times \dfrac { 1 } { 3 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \div } \color{#FF6800}{ \dfrac { 2 } { 3 } } - 6 \times \dfrac { 1 } { 3 }$
$ $ Calculate division of fractions $ $
$\color{#FF6800}{ 6 } - 6 \times \dfrac { 1 } { 3 }$
$6 \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$ $ Calculate the product of rational numbers $ $
$6 \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Subtract $ 2 $ from $ 6$
$\color{#FF6800}{ 4 }$