Symbol

Calculator search results

Formula
Calculate the value
$\left( -1+ \sqrt{ 2 } \right) \left( 3+ \sqrt{ 2 } \right)$
$- 1 + 2 \sqrt{ 2 }$
Calculate the value
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \right )$
 Expand using $\left(a + b\right)\left(c + d\right) = ac + ad + bc + bd$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } \times 3 - 1 \sqrt{ 2 } + \sqrt{ 2 } \times 3 + \sqrt{ 2 } \sqrt{ 2 }$
 Multiplying any number by 1 does not change the value 
$- 3 - 1 \sqrt{ 2 } + \sqrt{ 2 } \times 3 + \sqrt{ 2 } \sqrt{ 2 }$
$- 3 \color{#FF6800}{ - } \color{#FF6800}{ 1 } \sqrt{ 2 } + \sqrt{ 2 } \times 3 + \sqrt{ 2 } \sqrt{ 2 }$
 Multiplying any number by 1 does not change the value 
$- 3 - \sqrt{ 2 } + \sqrt{ 2 } \times 3 + \sqrt{ 2 } \sqrt{ 2 }$
$- 3 - \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + \sqrt{ 2 } \sqrt{ 2 }$
 Simplify the expression 
$- 3 - \sqrt{ 2 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } + \sqrt{ 2 } \sqrt{ 2 }$
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \sqrt{ \color{#FF6800}{ 2 } } \sqrt{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } } \sqrt{ 2 }$
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } \right ) ^ { 1 } \sqrt{ \color{#FF6800}{ 2 } }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } \right ) ^ { 1 } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } }$
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } } \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } \right ) ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ 2 } \right ) ^ { \color{#FF6800}{ 2 } }$
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \left ( \sqrt{ \color{#FF6800}{ 2 } } \right ) ^ { \color{#FF6800}{ 2 } }$
 If you square the radical sign, it will disappear 
$- 3 - \sqrt{ 2 } + 3 \sqrt{ 2 } + \color{#FF6800}{ 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 3 } - \sqrt{ 2 } + 3 \sqrt{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
 Add $- 3$ and $2$
$\color{#FF6800}{ - } \color{#FF6800}{ 1 } - \sqrt{ 2 } + 3 \sqrt{ 2 }$
$- 1 \color{#FF6800}{ - } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
 Calculate between similar terms 
$- 1 + \color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture