Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
$\left( -1 \right) ^{ 12 } +1 ^{ 15 } + \left( -1 \right) ^{ 22 } -1 ^{ 7 }$
$2$
Calculate the value
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 12 } } + 1 ^ { 15 } + \left ( - 1 \right ) ^ { 22 } - 1 ^ { 7 }$
$ $ Remove negative signs because negative numbers raised to even powers are positive $ $
$1 ^ { 12 } + 1 ^ { 15 } + \left ( - 1 \right ) ^ { 22 } - 1 ^ { 7 }$
$\color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 12 } } + 1 ^ { 15 } + \left ( - 1 \right ) ^ { 22 } - 1 ^ { 7 }$
$ $ Calculate power $ $
$\color{#FF6800}{ 1 } + 1 ^ { 15 } + \left ( - 1 \right ) ^ { 22 } - 1 ^ { 7 }$
$1 + \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 15 } } + \left ( - 1 \right ) ^ { 22 } - 1 ^ { 7 }$
$ $ Calculate power $ $
$1 + \color{#FF6800}{ 1 } + \left ( - 1 \right ) ^ { 22 } - 1 ^ { 7 }$
$1 + 1 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 22 } } - 1 ^ { 7 }$
$ $ Remove negative signs because negative numbers raised to even powers are positive $ $
$1 + 1 + 1 ^ { 22 } - 1 ^ { 7 }$
$1 + 1 + \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 22 } } - 1 ^ { 7 }$
$ $ Calculate power $ $
$1 + 1 + \color{#FF6800}{ 1 } - 1 ^ { 7 }$
$1 + 1 + 1 - \color{#FF6800}{ 1 } ^ { \color{#FF6800}{ 7 } }$
$ $ Calculate power $ $
$1 + 1 + 1 - \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 1 } + 1 + 1 \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Remove the two numbers if the values are the same and the signs are different $ $
$1 + 1$
$\color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Add $ 1 $ and $ 1$
$\color{#FF6800}{ 2 }$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo