# Calculator search results

Formula
Find the sum or difference of the fractions
$\left( - \dfrac{ 5 }{ 3 } \right) + \left( - \dfrac{ 1 }{ 5 } \right)$
$- \dfrac { 28 } { 15 }$
Find the sum or difference of the fractions
$- \dfrac { 5 } { \color{#FF6800}{ 3 } } - \dfrac { 1 } { \color{#FF6800}{ 5 } }$
 The smallest common multiple in denominator is $15$
$- \dfrac { 5 } { \color{#FF6800}{ 3 } } - \dfrac { 1 } { \color{#FF6800}{ 5 } }$
$- \dfrac { 5 } { 3 } - \dfrac { 1 } { 5 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$- \dfrac { 5 \times \color{#FF6800}{ 5 } } { 3 \times \color{#FF6800}{ 5 } } - \dfrac { 1 \times \color{#FF6800}{ 3 } } { 5 \times \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 5 \times 5 } { 3 \times 5 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 \times 3 } { 5 \times 3 } }$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 25 } { 15 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 15 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 25 } { 15 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 15 } }$
 Since the denominator is the same as $15$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { - 25 - 3 } { 15 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 25 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } { 15 }$
 Find the sum of the negative numbers 
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 28 } } { 15 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 28 } } { 15 }$
 Move the minus sign to the front of the fraction 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 28 } { 15 } }$
Solution search results