Calculator search results

Formula
Find the sum or difference of the fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
$\left( - \dfrac{ 5 }{ 3 } \right) + \left( - \dfrac{ 1 }{ 5 } \right)$
$- \dfrac { 28 } { 15 }$
Find the sum or difference of the fractions
$- \dfrac { 5 } { \color{#FF6800}{ 3 } } - \dfrac { 1 } { \color{#FF6800}{ 5 } }$
$ $ The smallest common multiple in denominator is $ 15$
$- \dfrac { 5 } { \color{#FF6800}{ 3 } } - \dfrac { 1 } { \color{#FF6800}{ 5 } }$
$- \dfrac { 5 } { 3 } - \dfrac { 1 } { 5 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$- \dfrac { 5 \times \color{#FF6800}{ 5 } } { 3 \times \color{#FF6800}{ 5 } } - \dfrac { 1 \times \color{#FF6800}{ 3 } } { 5 \times \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 5 \times 5 } { 3 \times 5 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 \times 3 } { 5 \times 3 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 25 } { 15 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 15 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 25 } { 15 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 15 } }$
$ $ Since the denominator is the same as $ 15 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { - 25 - 3 } { 15 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 25 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } } { 15 }$
$ $ Find the sum of the negative numbers $ $
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 28 } } { 15 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 28 } } { 15 }$
$ $ Move the minus sign to the front of the fraction $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 28 } { 15 } }$
Solution search results
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-$→$ 
$\left(B-C\right)$ परिकलित कीजिए। साथ ही सत्यापित कीजिए कि $A+\left(B-C\right)$ 
यदि $A= \begin{cases} \dfrac {2} {3}1\dfrac {5} {3} \\ \dfrac {1} {3}\dfrac {2} {3}\dfrac {4} {3} \\ \dfrac {7} {3}2\dfrac {2} {3} \end{cases} $ तथा $B= \begin{cases} \dfrac {2} {5}\dfrac {3} {5}1 \\ \dfrac {1} {5}\dfrac {2} {5}\dfrac {4} {5} \\ \dfrac {7} {5}\dfrac {6} {5}\dfrac {2} {5} \end{cases} $ तो $3A-53$ परिक्रलित
10th-13th grade
Other
search-thumbnail-$8 \times $ 
$ = $ In $ \dfrac { E } { 8 } $ $ \left. \begin{array} { l } { \dfrac { 1 } { 3 } } \\ { \dfrac { 11 } { 3 } } \end{array} \right. $ $ \left. \begin{array} { l } { \dfrac { 1 } { 1 } } \\ { \dfrac { 1 } { 1 } } \end{array} \right. $ and $ \left. \begin{array} { l } { δ } \\ { 8 } \end{array} \right. $ 
Find the length of PR. $ \bar { I } $ 
$0$ 
$ \bar { u } $ 
$2$ $ = $ $ \| = $
7th-9th grade
Other
search-thumbnail-$5$ Find $$ for $ \left. \begin{array} { l } { \dfrac { 5 } { 5 } } \\ { \dfrac { 5 } { 5 } } \end{array} $ 
a$ = $ cy$ = $ 
b. $ = \dfrac { 5 } { 5 } $ d. $ = \dfrac { 1 } { 5 } $ 
$ = $ Find the derivative for $ | 1$ lol od 
orte 
$ = $ $a$ $ \left. \begin{array} { l } { 21 } \\ { 21 } \end{array} \right. $ 
b. $ = $ $$ $ = $
10th-13th grade
Calculus
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo