Symbol

Calculator search results

Formula
Find the sum or difference of the fractions
$\left( - \dfrac{ 4 }{ 5 } \right) - \left( + \dfrac{ 8 }{ 15 } \right)$
$- \dfrac { 4 } { 3 }$
Find the sum or difference of the fractions
$- \dfrac { 4 } { \color{#FF6800}{ 5 } } - \dfrac { 8 } { \color{#FF6800}{ 15 } }$
 The smallest common multiple in denominator is $15$
$- \dfrac { 4 } { \color{#FF6800}{ 5 } } - \dfrac { 8 } { \color{#FF6800}{ 15 } }$
$- \dfrac { 4 } { 5 } - \dfrac { 8 } { 15 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$- \dfrac { 4 \times \color{#FF6800}{ 3 } } { 5 \times \color{#FF6800}{ 3 } } - \dfrac { 8 } { 15 }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 \times 3 } { 5 \times 3 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 8 } { 15 } }$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 12 } { 15 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 8 } { 15 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 12 } { 15 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 8 } { 15 } }$
 Since the denominator is the same as $15$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { - 12 - 8 } { 15 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } } { 15 }$
 Find the sum of the negative numbers 
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 20 } } { 15 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 20 } } { 15 }$
 Move the minus sign to the front of the fraction 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 20 } { 15 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 20 } { 15 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 4 } { 3 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture