Symbol

# Calculator search results

Formula
Find the sum or difference of the fractions
$\left( - \dfrac{ 3 }{ 5 } \right) + \left( - \dfrac{ 3 }{ 4 } \right)$
$- \dfrac { 27 } { 20 }$
Find the sum or difference of the fractions
$- \dfrac { 3 } { \color{#FF6800}{ 5 } } - \dfrac { 3 } { \color{#FF6800}{ 4 } }$
 The smallest common multiple in denominator is $20$
$- \dfrac { 3 } { \color{#FF6800}{ 5 } } - \dfrac { 3 } { \color{#FF6800}{ 4 } }$
$- \dfrac { 3 } { 5 } - \dfrac { 3 } { 4 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$- \dfrac { 3 \times \color{#FF6800}{ 4 } } { 5 \times \color{#FF6800}{ 4 } } - \dfrac { 3 \times \color{#FF6800}{ 5 } } { 4 \times \color{#FF6800}{ 5 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 \times 4 } { 5 \times 4 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 \times 5 } { 4 \times 5 } }$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 12 } { 20 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 15 } { 20 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 12 } { 20 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 15 } { 20 } }$
 Since the denominator is the same as $20$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { - 12 - 15 } { 20 } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 15 } } { 20 }$
 Find the sum of the negative numbers 
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 27 } } { 20 }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 27 } } { 20 }$
 Move the minus sign to the front of the fraction 
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 27 } { 20 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture