$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 5 } { \color{#FF6800}{ 2 } }$
$ $ The smallest common multiple in denominator is $ 4$
$- \dfrac { 3 } { \color{#FF6800}{ 4 } } + \dfrac { 5 } { \color{#FF6800}{ 2 } }$
$- \dfrac { 3 } { 4 } + \dfrac { 5 } { 2 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$- \dfrac { 3 } { 4 } + \dfrac { 5 \times \color{#FF6800}{ 2 } } { 2 \times \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } { \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 10 } } { \color{#FF6800}{ 4 } } }$
$\color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } } { \color{#FF6800}{ 4 } } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 10 } } { \color{#FF6800}{ 4 } } }$
$ $ Since the denominator is the same as $ 4 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } } { \color{#FF6800}{ 4 } } }$
$\dfrac { \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } } { 4 }$
$ $ Add $ - 3 $ and $ 10$
$\dfrac { \color{#FF6800}{ 7 } } { 4 }$